First Report of Botrytis cinerea Causing Gray Mold Disease on Peach from Pakistan

Author:

Ahmed Raees,Gondal Amjad S.,Khan Muhammad Tariq,Shahzaman Shazia,Hyder Sajjad

Abstract

Gray mold caused by Botrytis cinerea is an important disease that attacks fruits, leaves and twigs of peach. Peach is grown on an area of 18,008 ha with an average production of 72,085 tons per year in Pakistan (FAO, 2017). During May 2017, brown spots on 33% of the peach fruits examined were observed in Swat district of KPK province of Pakistan. Infected fruits were incubated at 25±2 °C in a humid chamber resulted in greyish mycelial growth with light brown lesions. Hyphal growths on infected fruits were cultured on PDA media and purified by hyphal tip method. Morphologically whitish grey growth was observed on PDA and later on dark sclerotia were observed after 6-7 days of incubation. Hyphae were found septate with branched hyaline conidiophores having a bunch of ovoid conidia at their tips. Further confirmations were done by amplifying internal transcribed spacer regions (Andrew et al., 2009) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) region of the isolates (Li et al., 2012). Amplicons sequenced from Macrogen Korea were blasted and submitted in NCBI showed that ITS sequences (Accessions MH049690 and MH049691) were 99% identical with already reported (MG878388 and MG654661) sequences and the G3PDH gene sequences (Accessions MH560352 and MH560353) were 99 % identical with already reported (Accessions MG204876) sequences of B. cinerea. Pathogenicity was confirmed on healthy peach fruits disinfected with 50% ethanol, inoculated by placing a plug of about 1cm2 taken from the edge of actively growing B. cinerea isolate (BTS-16). Fruits were incubated at 25±2 °C in a humid chamber (Abata et al., 2016). A set of healthy fruits mock-inoculated with a plug of agar medium were used as control. Three days after inoculation, inoculated fruits showed sunken lesions with cottony greyish mycelial growth on their surface. Fungus isolated from these infections was re-confirmed as B. cinerea. Conducive environment for the disease progression in nearby areas can result into a huge loss in peach produce so there is a need to devise management strategies to cope with the pathogen. This is the first report of gray mold disease of peach caused by B. cinerea from Pakistan. 

Publisher

EScience Press

Subject

Plant Science,Agricultural and Biological Sciences (miscellaneous),Agronomy and Crop Science

Reference4 articles.

1. Abata, L. K., A. R. Izquierdo, W. Viera and F. J. Flores. 2016. First report of Botrytis rot caused by Botrytis cinerea on peach in Ecuador. Journal of Plant Pathology, 98: 690.

2. Andrew, M., T. L. Peever and B. M. Pryor. 2009. An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia, 101: 95-109.

3. FAO. 2017. Food and Agriculture Organization. United Nations, New York, United States.

4. Li, X., D. Fernández-Ortuño, W. Chai, F. Wang and G. Schnabel. 2012. Identification and prevalence of Botrytis spp. from blackberry and strawberry fields of the Carolinas. Plant disease, 96: 1634-1637.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3