Expression of MAP2, GFAP, and calcium in CA3 area of a modified organotypic hippocampal slice culture treated with kainic acid

Author:

Husna MachlusilORCID,Handono Kusworini,Sujuti Hidayat,Aulanni'am Aulanni'amORCID,Rukmigarsari Ettie

Abstract

Background: Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure. The organotypic hippocampal slice culture (OHSC) is a useful model for studying the neurodegeneration process, but there are still many protocol differences. In this study, minor modifications were made in the OHSC protocol.  Methods: OHSC was obtained from two healthy wild type Wistar rats aged P10. Healthy culture slices were obtained and lasted up to 10 days in vitro (DIV 10). Bath application of kainic acid for 48 hours in DIV 10 followed by observation of its initial effects on neurons, astrocytes, and calcium via the expression of MAP2, GFAP, and intracellular calcium, subsequently. Results: After 48 h of kainic acid administration, there was a significant increase in intracellular calcium (p = 0.006 < α), accompanied by a significant decrease in MAP2 (p = 0.003 < α ) and GFAP (p = 0.010 < α) expression. Conclusion: These findings suggest early neuronal and astrocyte damage at the initial onset of hippocampal injury. This implies that astrocyte damage occurs early before an increase in GFAP that characterizes reactive astrogliosis found in other studies. Damage to neurons and astrocytes may be associated with increased intracellular calcium. It is necessary to develop further research regarding expression of calcium, MAP2, and GFAP at a spatial time after exposure to kainic acid and strategies to reduce damage caused by excitotoxicity.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3