De novo whole-genome assembly of a wild type yeast isolate using nanopore sequencing

Author:

Liem Michael,Jansen Hans J.ORCID,Dirks Ron P.,Henkel Christiaan V.ORCID,van Heusden G. Paul H.,Lemmers Richard J.L.F.,Omer Trifa,Shao Shuai,Punt Peter J.,Spaink Herman P.

Abstract

Background: The introduction of the MinION sequencing device by Oxford Nanopore Technologies may greatly accelerate whole genome sequencing. Nanopore sequence data offers great potential for de novo assembly of complex genomes without using other technologies. Furthermore, Nanopore data combined with other sequencing technologies is highly useful for accurate annotation of all genes in the genome. In this manuscript we used nanopore sequencing as a tool to classify yeast strains. Methods: We compared various technical and software developments for the nanopore sequencing protocol, showing that the R9 chemistry is, as predicted, higher in quality than R7.3 chemistry. The R9 chemistry is an essential improvement for assembly of the extremely AT-rich mitochondrial genome. We double corrected assemblies from four different assemblers with PILON and assessed sequence correctness before and after PILON correction with a set of 290 Fungi genes using BUSCO. Results: In this study, we used this new technology to sequence and de novo assemble the genome of a recently isolated ethanologenic yeast strain, and compared the results with those obtained by classical Illumina short read sequencing. This strain was originally named Candida vartiovaarae (Torulopsis vartiovaarae) based on ribosomal RNA sequencing. We show that the assembly using nanopore data is much more contiguous than the assembly using short read data. We also compared various technical and software developments for the nanopore sequencing protocol, showing that nanopore-derived assemblies provide the highest contiguity. Conclusions: The mitochondrial and chromosomal genome sequences showed that our strain is clearly distinct from other yeast taxons and most closely related to published Cyberlindnera species. In conclusion, MinION-mediated long read sequencing can be used for high quality de novo assembly of new eukaryotic microbial genomes.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3