High throughput biological sequence analysis using machine learning-based integrative pipeline for extracting functional annotation and visualization

Author:

Al Amin MdORCID,Naznin Feroza,Yeasmin Most Nilufa,Sarkar Md SumonORCID,Misor Mia Md,Chowdhury AbdullahiORCID,Islam Md Zahidul

Abstract

The Differential Gene Expression (DGE) approach to find out the expressed genes relies on measures such as log-fold change and adjusted p-values. Although fold change is commonly employed in gene expression studies, especially in microarray and RNA sequencing experiments to quantify alterations in a gene’s expression level, a limitation and potential hazard of relying on fold change in this context is its inherent bias. As a consequence, it might incorrectly categorize genes that have significant differences but minor ratios, resulting in poor detection of mutations in genes with high expression levels. In contrast, machine learning offers a more comprehensive view, adept at capturing the non-linear complexities of gene expression data and providing robustness against noise that inspired us to utilize machine learning models to explore differential gene expression based on feature importance in Type 2 Diabetes (T2D), a significant global health concern, in this study. Moreover, we validated biomarkers based on our findings expressed genes with previous studies to ensure the effectiveness of our ML models in this work which led us to go through to analysis pathways, gene ontologies, protein-protein interactions, transcription factors, miRNAs, and drug predictions to deal with T2D. This study aims to consider the machine learning technique as a good way to know about expressed genes profoundly not relying on the DGE approach, and to control or reduce the risk of T2D patients by helping drug developer researchers.

Publisher

F1000 Research Ltd

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3