Stenotrophomonas goyi sp. nov., a novel bacterium associated with the alga Chlamydomonas reinhardtii

Author:

Torres María JesusORCID,Fakhimi NedaORCID,Dubini AlexandraORCID,González-Ballester DavidORCID

Abstract

Background A culture of the green algae Chlamydomonas reinhardtii was accidentally contaminated with three different bacteria in our laboratory facilities. This contaminated alga culture showed increased algal biohydrogen production. These three bacteria were independently isolated. Methods The chromosomic DNA of one of the isolated bacteria was extracted and sequenced using PacBio technology. Tentative genome annotation (RAST server) and phylogenetic trees analysis (TYGS server) were conducted. Diverse growth tests were assayed for the bacterium and for the alga-bacterium consortium. Results Phylogenetic analysis indicates that the bacterium is a novel member of the Stenotrophomonas genus that has been termed in this work as S. goyi sp. nov. A fully sequenced genome (4,487,389 base pairs) and its tentative annotation (4,147 genes) are provided. The genome information suggests that S. goyi sp. nov. is unable to use sulfate and nitrate as sulfur and nitrogen sources, respectively. Growth tests have confirmed the dependence on the sulfur-containing amino acids methionine and cysteine. S. goyi sp. nov. and Chlamydomonas reinhardtii can establish a mutualistic relationship when cocultured together. Conclusions S. goyi sp. nov. could be of interest for the design of biotechnological approaches based on the use of artificial microalgae-bacteria multispecies consortia that take advantage of the complementary metabolic capacities of their different microorganisms.

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference35 articles.

1. PHASTER: a better, faster version of the PHAST phage search tool.;D Arndt;Nucleic Acids Res.,2016

2. Sulfur-oxidizing plant growth promoting rhizobacteria for enhanced canola performance. US Patent.;M Banerjee,2008

3. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes.;T Brettin;Sci. Rep.,2015

4. BLAST+: Architecture and applications.;C Camacho;BMC Bioinformatics.,2009

5. Microalgal metabolic network model refinement through high-throughput functional metabolic profiling.;A Chaiboonchoe;Front. Bioeng. Biotechnol.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3