Negligible effects of read trimming on the accuracy of germline short variant calling in the human genome

Author:

Barbitoff YuryORCID,Predeus AlexanderORCID

Abstract

Background Next generation sequencing (NGS) has become a standard tool in the molecular diagnostics of Mendelian disease, and the precision of such diagnostics is greatly affected by the accuracy of variant calling from sequencing data. Recently, we have comprehensively evaluated the performance of multiple variant calling pipelines. However, no systematic analysis of the effects of read trimming on variant discovery with modern variant calling software has yet been performed. Methods In this work, we systematically evaluated the effects of adapters on the performance of 8 variant calling and filtering methods using 14 standard reference Genome-in-a-Bottle (GIAB) samples. Variant calls were compared to the ground truth variant sets, and the effect of adapter trimming with different tools was assessed using major performance metrics (precision, recall, and F1 score). Results We show that adapter trimming has no effect on the accuracy of the best-performing variant callers (e.g., DeepVariant) on whole-genome sequencing (WGS) data. For whole-exome sequencing (WES) datasets subtle improvement of accuracy was observed in some of the samples. In high-coverage WES data (~200x mean coverage), adapter removal allowed for discovery of 2-4 additional true positive variants in only two out of seven datasets tested. Moreover, this effect was not dependent on the median insert size and proportion of adapter sequences in reads. Surprisingly, the effect of trimming on variant calling was reversed when moderate coverage (~80-100x) WES data was used. Finally, we show that some of the recently developed machine learning-based variant callers demonstrate greater dependence on the presence of adapters in reads. Conclusions Taken together, our results indicate that adapter removal is unnecessary when calling germline variants, but suggest that preprocessing methods should be carefully chosen when developing and using machine learning-based variant analysis methods.

Publisher

F1000 Research Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3