Semantics for interoperability of distributed data and models: Foundations for better-connected information

Author:

Villa FerdinandoORCID,Balbi StefanoORCID,Athanasiadis Ioannis N.,Caracciolo Caterina

Abstract

Correct and reliable linkage of independently produced information is a requirement to enable sophisticated applications and processing workflows. These can ultimately help address the challenges posed by complex systems (such as socio-ecological systems), whose many components can only be described through independently developed data and model products. We discuss the first outcomes of an investigation in the conceptual and methodological aspects of semantic annotation of data and models, aimed to enable a high standard of interoperability of information. The results, operationalized in the context of a long-term, active, large-scale project on ecosystem services assessment, include: A definition of interoperability based on semantics and scale;A conceptual foundation for the phenomenology underlying scientific observations, aimed to guide the practice of semantic annotation in domain communities;A dedicated language and software infrastructure that operationalizes the findings and allows practitioners to reap the benefits of data and model interoperability. The work presented is the first detailed description of almost a decade of work with communities active in socio-ecological system modeling. After defining the boundaries of possible interoperability based on the understanding of scale, we discuss examples of the practical use of the findings to obtain consistent, interoperable and machine-ready semantic specifications that can integrate semantics across diverse domains and disciplines.

Funder

National Science Foundation

Ecosystem Services for Poverty Alleviation

Horizon 2020

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3