Fire risk modeling: an integrated and data-driven approach applied to Sicily

Author:

Marquez Torres AlbaORCID,Signorello Giovanni,Kumar Sudeshna,Adamo Greta,Villa Ferdinando,Balbi Stefano

Abstract

Abstract. Wildfires are key not only to landscape transformation and vegetation succession, but also to socio-ecological values loss. Fire risk mapping can help to manage the most vulnerable and relevant ecosystems impacted by wildfires. However, few studies provide accessible daily dynamic results at different spatio-temporal scales. We develop a fire risk model for Sicily (Italy), an iconic case of the Mediterranean Basin, integrating a fire hazard model with an exposure and vulnerability analysis under present and future conditions. The integrated model is data-driven but can run dynamically at a daily time step, providing spatially and temporally explicit results through the k.LAB (Knowledge Laboratory) software. This software provides an environment for input data integration, combining methods and data such as geographic information systems, remote sensing and Bayesian network algorithms. All data and models are semantically annotated, open and downloadable in agreement with the FAIR principles (findable, accessible, interoperable and reusable). The fire risk analysis reveals that 45 % of vulnerable areas of Sicily have a high probability of fire occurrence in 2050. The risk model outputs also include qualitative risk indexes, which can make the results more understandable for non-technical stakeholders. We argue that this approach is well suited to aiding in landscape and fire risk management, under both current and climate change conditions.

Funder

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference125 articles.

1. Ager, A. and Finney, M. A.: Climate change impact on fire probability and severity in Mediterranean areas, in: Proceedings of the VI International Conference on Forest Fire Research, 15–18 November 2010, University of Coimbra Viegas, Coimbra, Portugal, p. 9, https://www.fs.usda.gov/research/treesearch/39345, last access: 30 August 2023), U.S. Department of Agriculture, 2010.

2. Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R., and Salmerón, A.: Bayesian networks in environmental modelling, Environ. Model. Softw., 26, 1376–1388, https://doi.org/10.1016/j.envsoft.2011.06.004, 2011.

3. Aldersley, A., Murray, S. J., and Cornell, S. E.: Global and regional analysis of climate and human drivers of wildfire, Sci. Total Environ., 409, 3472–3481, https://doi.org/10.1016/j.scitotenv.2011.05.032, 2011.

4. Angelini, P., Bianco, P., Cardillo, A., Francescato, C., and Oriolo, G.: Gli habitat in Carta della Natura – schede descrittive degli habitat per la cartografia alla scala 1:50.000, ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale, ISBN 978-88-448-0382-7, 2009.

5. Antrop, M.: Why landscapes of the past are important for the future, Landsc. Urban Plan., 70, 21–34, https://doi.org/10.1016/j.landurbplan.2003.10.002, 2005.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3