Umpire 2.0: Simulating realistic, mixed-type, clinical data for machine learning

Author:

Coombes Caitlin E.,Abrams Zachary B.,Nakayiza Samantha,Brock Guy,Coombes Kevin R.ORCID

Abstract

The Umpire 2.0 R-package offers a streamlined, user-friendly workflow to simulate complex, heterogeneous, mixed-type data with known subgroup identities, dichotomous outcomes, and time-to-event data, while providing ample opportunities for fine-tuning and flexibility. Here, we describe how we have expanded the core Umpire 1.0 R-package, developed to simulate gene expression data, to generate clinically realistic, mixed-type data for use in evaluating unsupervised and supervised machine learning (ML) methods. As the availability of large-scale clinical data for ML has increased, clinical data has posed unique challenges, including widely variable size, individual biological heterogeneity, data collection and measurement noise, and mixed data types. Developing and validating ML methods for clinical data requires data sets with known ground truth, generated from simulation. Umpire 2.0 addresses challenges to simulating realistic clinical data by providing the user a series of modules to generate survival parameters and subgroups, apply meaningful additive noise, and discretize to single or mixed data types. Umpire 2.0 provides broad functionality across sample sizes, feature spaces, and data types, allowing the user to simulate correlated, heterogeneous, binary, continuous, categorical, or mixed type data from the scale of a small clinical trial to data on thousands of patients drawn from electronic health records. The user may generate elaborate simulations by varying parameters in order to compare algorithms or interrogate operating characteristics of an algorithm in both supervised and unsupervised ML.

Funder

National Center for Advancing Translational Sciences

National Cancer Institute

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3