SillyPutty: Improved clustering by optimizing the silhouette width

Author:

Bombina Polina,Tally Dwayne,Abrams Zachary B.,Coombes Kevin R.ORCID

Abstract

AbstractUnsupervised clustering is an important task in biomedical science. We developed a new clustering method, called SillyPutty, for unsupervised clustering. As test data, we generated a series of datasets using the Umpire R package. Using these datasets, we compared SillyPutty to several existing algorithms using multiple metrics (Silhouette Width, Adjusted Rand Index, Entropy, Normalized Within-group Sum of Square errors, and Perfect Classification Count). Our findings revealed that SillyPutty is a valid standalone clustering method, comparable in accuracy to the best existing methods. We also found that the combination of hierarchical clustering followed by SillyPutty has the best overall performance in terms of both accuracy and speed.AvailabilityThe SillyPutty R package has been submitted to the Comprehensive R Archive Network (CRAN). Code to perform and analyze the simulations described here can be found in a Git project hosted athttps://gitlab.com/krcoombes/sillyputty.

Publisher

Cold Spring Harbor Laboratory

Reference24 articles.

1. optCluster: An R Package for Determining the Optimal Clustering Algorithm

2. Computational cluster validation in post-genomic data analysis

3. The best clustering algorithms in data mining

4. Hierarchical Grouping to Optimize an Objective Function

5. MacQueen J. Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. University of California Press; 1967. pp. 281–298.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3