Structural bioinformatics predicts that the Retinitis Pigmentosa-28 protein of unknown function FAM161A is a homologue of the microtubule nucleation factor Tpx2

Author:

Levine Timothy P.ORCID

Abstract

Background: FAM161A is a microtubule-associated protein conserved widely across eukaryotes, which is mutated in the inherited blinding disease Retinitis Pigmentosa-28. FAM161A is also a centrosomal protein, being a core component of a complex that forms an internal skeleton of centrioles. Despite these observations about the importance of FAM161A, current techniques used to examine its sequence reveal no homologies to other proteins. Methods: Sequence profiles derived from multiple sequence alignments of FAM161A homologues were constructed by PSI-BLAST and HHblits, and then used by the profile-profile search tool HHsearch, implemented online as HHpred, to identify homologues. These in turn were used to create profiles for reverse searches and pair-wise searches. Multiple sequence alignments were also used to identify amino acid usage in functional elements. Results: FAM161A has a single homologue: the targeting protein for Xenopus kinesin-like protein-2 (Tpx2), which is a strong hit across more than 200 residues. Tpx2 is also a microtubule-associated protein, and it has been shown previously by a cryo-EM molecular structure to nucleate microtubules through two small elements: an extended loop and a short helix. The homology between FAM161A and Tpx2 includes these elements, as FAM161A has three copies of the loop, and one helix that has many, but not all, properties of the one in Tpx2. Conclusions: FAM161A and ­its homologues are predicted to be a previously unknown variant of Tpx2, and hence bind microtubules in the same way. This prediction allows precise, testable molecular models to be made of FAM161A-microtubule complexes.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

F1000 Research Ltd

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3