Abstract
Background: The sugarcane borer (Diatraea saccharalis), a widely distributed moth throughout the Americas, is a pest that affects economically important crops such as sugarcane, sorghum, wheat, maize and rice. Given its significant impact on yield reduction, whole-genome information of the species is needed. Here, we report the first draft assembly of the D. saccharalis genome. Methods: The genomic sequences were obtained using the Illumina HiSeq 2500 whole-genome sequencing of a single adult male specimen. We assembled the short-reads using the SPAdes software and predicted protein-coding genes using MAKER. Genome assembly completeness was assessed through BUSCO and the repetitive content by RepeatMasker. Results: The 453 Mb assembled sequences contain 1,445 BUSCO gene orthologs and 1,161 predicted gene models identified based on homology evidence to the domestic silk moth, Bombyx mori. The repeat content composes 41.18% of the genomic sequences which is in the range of other lepidopteran species. Conclusions: Functional annotation reveals that predicted gene models are involved in important cellular mechanisms such as metabolic pathways and protein synthesis. Thus, the data generated in this study expands our knowledge on the genomic characteristics of this devastating pest and provides essential resources for future genetic studies of the species.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献