An algorithm for trajectory optimization of dual-arm coordination based on arm angle constraints

Author:

Wang QiORCID,Min HuasongORCID,Guo Yixuan

Abstract

In this paper, the motion planning of a dual-arm robot with kinematic constraints is studied based on arm-angle constraints. When a dual-arm robot moves a common object, a closed kinematic chain is formed between the dual-arm and the object. The standard sampling-based trajectory planning algorithm solves the problem with closed-chain constraint, but this causes other problems; the running time increases, the success rate decreases, and the motion trajectory of the end effector is not smooth resulting in large output error. Therefore, this paper proposes a dual-arm coordinated trajectory optimization algorithm based on arm-angle constraints. Firstly, the kinematics of the dual-arm robot is modeled and analyzed, and the definition of the arm-angle in a seven-axis robot is proposed, the workspace of the dual-arm coordinated operation is considered to constrain it, the kinematics equation combined with the single/multi-objective optimization algorithm is used to optimize the end output error, and the joint trajectory is parameterized. This paper solves the problems that the slave arm lags behind the main arm, the motion trajectory of the dual-arm is not smooth, and the dual-arm are squeezed due to internal force during the coordinated movement of the dual-arm. The trajectory optimization improves the synchronization of the coordinated operation of the dual-arm, reduces the output error of the velocity and acceleration at the end of the dual-arm. After limiting the arm-angle, dual-arm manipulation is anthropomorphic the robot does not produce distorted arm configurations.

Funder

Major Project of Hubei Province Technology Innovation

National Natural Science Foundation of China

Publisher

F1000 Research Ltd

Reference22 articles.

1. A general, fast, and robust implementation of the time-optimal path parameterization algorithm.;Q Pham;IEEE Trans Robot.,2014

2. An Optimization-Based Approach to Dual-Arm Motion Planning with Closed Kinematics.;A Völz;2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).,2018

3. Inverse kinematic optimization of 7R humanoid arm with joint limits.;H Xijian;Journal of Jilin University: Engineering and Technology Edition.,2016

4. Randomized Kinodynamic Planning.;S Lavalle;Int J Rob Res.,2001

5. Continuous trajectory optimization for autonomous humanoid door opening.;M Zucker;2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA).,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3