Abstract
Background: The human malaria parasite Plasmodium falciparum has evolved complex drug evasion mechanisms to all available antimalarials. To date, the combination of amodiaquine-artesunate is among the drug of choice for treatment of uncomplicated malaria. In this combination, a short acting, artesunate is partnered with long acting, amodiaquine for which resistance may emerge rapidly especially in high transmission settings. Here, we used a rodent malaria parasite Plasmodium berghei ANKA as a surrogate of P. falciparum to investigate the mechanisms of amodiaquine resistance. Methods: We used serial technique to select amodiaquine resistance by submitting the parasites to continuous amodiaquine pressure. We then employed the 4-Day Suppressive Test to monitor emergence of resistance and determine the cross-resistance profiles. Finally, we genotyped the resistant parasite by PCR amplification, sequencing and relative quantitation of mRNA transcript of targeted genes. Results: Submission of P. berghei ANKA to amodiaquine pressure yielded resistant parasite within thirty-six passages. The effective dosage that reduced 90% of parasitaemia (ED90) of sensitive line and resistant line were 4.29mg/kg and 19.13mg/kg, respectively. After freezing at -80ºC for one month, the resistant parasite remained stable with an ED90 of 18.22mg/kg. Amodiaquine resistant parasites are also resistant to chloroquine (6fold), artemether (10fold), primaquine (5fold), piperaquine (2fold) and lumefantrine (3fold). Sequence analysis of Plasmodium berghei chloroquine resistant transporter revealed His95Pro mutation. No variation was identified in Plasmodium berghei multidrug resistance gene-1 (Pbmdr1), Plasmodium berghei deubiquitinating enzyme-1 or Plasmodium berghei Kelch13 domain nucleotide sequences. Amodiaquine resistance is also accompanied by high mRNA transcripts of key transporters; Pbmdr1, V-type/H+ pumping pyrophosphatase-2 and sodium hydrogen ion exchanger-1 and Ca2+/H+ antiporter. Conclusions: Selection of amodiaquine resistance yielded stable “multidrug-resistant’’ parasites and thus may be used to study common resistance mechanisms associated with other antimalarial drugs. Genome wide studies may elucidate other functionally important genes controlling AQ resistance in P. berghei.
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Reference75 articles.
1. Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10.;A Afonso;Antimicrob Agents Chemother.,2006
2. Plasmodium chabaudi chabaudi malaria parasites can develop stable resistance to atovaquone with a mutation in the cytochrome b gene.;A Afonso;Malar J.,2010
3. In vitro activities of piperaquine and other 4-aminoquinolines against clinical isolates of Plasmodium falciparum in Cameroon.;L Basco;Antimicrob Agents Chemother.,2003
4. Plasmodium falciparum Na+/H+ exchanger activity and quinine resistance.;T Bennett;Mol Biochem Parasitol.,2007
5. Genomewide scan reveals amplification of mdr1 as a common denominator of resistance to mefloquine, lumefantrine, and artemisinin in Plasmodium chabaudi malaria parasites.;S Borges;Antimicrob Agents Chemother.,2011
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献