Abstract
Background: Assessing temporal variations in transmission in different countries is essential for monitoring the epidemic, evaluating the effectiveness of public health interventions and estimating the impact of changes in policy. Methods: We use case and death notification data to generate daily estimates of the time-varying reproduction number globally, regionally, nationally, and subnationally over a 12-week rolling window. Our modelling framework, based on open source tooling, accounts for uncertainty in reporting delays, so that the reproduction number is estimated based on underlying latent infections. Results: Estimates of the reproduction number, trajectories of infections, and forecasts are displayed on a dedicated website as both maps and time series, and made available to download in tabular form. Conclusions: This decision-support tool can be used to assess changes in virus transmission both globally, regionally, nationally, and subnationally. This allows public health officials and policymakers to track the progress of the outbreak in near real-time using an epidemiologically valid measure. As well as providing regular updates on our website, we also provide an open source tool-set so that our approach can be used directly by researchers and policymakers on confidential data-sets. We hope that our tool will be used to support decisions in countries worldwide throughout the ongoing COVID-19 pandemic.
Funder
Heiwa Nakajima Foundation
Alan Turing Institute
Economic and Social Research Council
Department for International Development, UK Government
Bill and Melinda Gates Foundation
National Institute for Health Research
Research Councils UK
Wellcome Trust
Health Data Research UK
Subject
General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)
Cited by
116 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献