Scaled deployment of Wolbachia to protect the community from dengue and other Aedes transmitted arboviruses

Author:

O'Neill Scott L.ORCID,Ryan Peter A.,Turley Andrew P.,Wilson Geoff,Retzki Kate,Iturbe-Ormaetxe Inaki,Dong Yi,Kenny Nichola,Paton Christopher J.,Ritchie Scott A.,Brown-Kenyon Jack,Stanford Darren,Wittmeier Natalie,Jewell Nicholas P.,Tanamas Stephanie K.,Anders Katherine L.ORCID,Simmons Cameron P.

Abstract

Background: A number of new technologies are under development for the control of mosquito transmitted viruses, such as dengue, chikungunya and Zika that all require the release of modified mosquitoes into the environment. None of these technologies has been able to demonstrate evidence that they can be implemented at a scale beyond small pilots. Here we report the first successful citywide scaled deployment of Wolbachia in the northern Australian city of Townsville. Methods: The wMel strain of Wolbachia was backcrossed into a local Aedes aegypti genotype and mass reared mosquitoes were deployed as eggs using mosquito release containers (MRCs). In initial stages these releases were undertaken by program staff but in later stages this was replaced by direct community release including the development of a school program that saw children undertake releases. Mosquito monitoring was undertaken with Biogents Sentinel (BGS) traps and individual mosquitoes were screened for the presence of Wolbachia with a Taqman qPCR or LAMP diagnostic assay. Dengue case notifications from Queensland Health Communicable Disease Branch were used to track dengue cases in the city before and after release. Results: Wolbachia was successfully established into local Ae. aegypti mosquitoes across 66 km2 in four stages over 28 months with full community support.  A feature of the program was the development of a scaled approach to community engagement. Wolbachia frequencies have remained stable since deployment and to date no local dengue transmission has been confirmed in any area of Townsville after Wolbachia has established, despite local transmission events every year for the prior 13 years and an epidemiological context of increasing imported cases. Conclusion: Deployment of Wolbachia into Ae. aegypti populations can be readily scaled to areas of ~60km2 quickly and cost effectively and appears in this context to be effective at stopping local dengue transmission

Funder

Foundation for the National Institutes of Health

Bill and Melinda Gates Foundation

National Health and Medical Research Council

Wellcome Trust

The Gillespie Family Foundation

The Queensland Government

Publisher

F1000 Research Ltd

Subject

Public Health, Environmental and Occupational Health,Health Policy,Immunology and Microbiology (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3