Abstract
Background: Sweetpotato, being a vegetatively propagated crop is prone to seed degeneration, and a continuous source for high quality sweetpotato seed is critical for an efficient seed system. In most Sub-Saharan African countries, the National Agricultural Research Systems use tissue culture to produce limited quantity of pre-basic sweetpotato seed which is then used as starting material to maintain and produce basic seed in mini-screen houses, net tunnels or open field multiplication in low-virus pressure areas by either the private seed companies or vine multipliers. Soil is the predominant media for pre-basic seed multiplication. Multiplying pre-basic sweetpotato seed in sand with fertigation, also known as ‘sandponics’ is a possible opportunity towards sustainable production of pre-basic sweetpotato seed. It would be beneficial to examine the feasibility and the potential to replace soil system with ‘sandponics’ for growing pre-basic sweetpotato seed. Methods: Pot experiments were conducted to study how sweetpotato vine propagation is affected by sequentially omitting nitrogen, phosphorus, calcium, sulfur and boron from fertilizer applications on cv. Kabode. The experiment was laid in a randomized complete block design with five levels of the factor fertilizer, replicated four times with two blocks. The effect of fertilization of nitrogen at (0, 100, 150, 200 & 250), phosphorus at (0, 30, 60, 90 & 120), calcium at (0, 100, 200, 300 & 400), sulfur at (0, 30, 60, 90 & 120) and boron at (0, 0.1, 0.2, 0.3 & 0.4) ppm on sweetpotato vegetative growth parameters was measured 45 days after planting. Results: The obtained results showed that application of 200, 60, 200, 120 and 0.3 ppm of N, P, Ca, S and B respectively recorded the highest values in sweetpotato vegetative growth parameters. Conclusions: These results imply that pre-basic sweetpotato vine yields in sandponics could be increased by using this optimized media.
Funder
Bill and Melinda Gates Foundation
Subject
Public Health, Environmental and Occupational Health,Health Policy,Immunology and Microbiology (miscellaneous),Biochemistry, Genetics and Molecular Biology (miscellaneous),Medicine (miscellaneous)
Reference62 articles.
1. Effects of sulphur fertilisation on growth response of sweetpotato vines.;K Alu;Niugini Agrisaiens.,2012
2. Nitrogen nutrition of greenhouse pepper. II. Effects of nitrogen concentration and NO3: NH4 ratio on growth, transpiration, and nutrient uptake.;A Bar-Tal;HortScience.,2001
3. Nutrition of crop plants – Plant science, research and practices;M Baset Mia,2015
4. Nutrient Deficiency Symptoms of Sweetpotato Varieties Planted in Degraded Uplands of Pinabacdao, Samar and in Commercial Areas of Leyte and Samar.;A Bautista;A Vegetative Parts.,2018
5. A tobacco asparagine synthetase gene responds to carbon and nitrogen status and its root expression is affected under boron stress.;V Beato;Plant Sci.,2010
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献