Development and Testing of Prototype-Scale Off-Grid Solar Power Generation for Electric Charging Station

Author:

Ulinuha Agus,Asy’ary Hasyim,Hasan Umar,Setyawan Andre

Abstract

Abstract: The demand of electricity that keeps increasing necessitates additional electricity generation. The highly dependence of power generation on fossil fuels implies the intensive use of this resources that may cause them finish sooner than predicted. On the other hand, the use of fossil fuels for transportation is quite dominant. The development and use of electric transportation system is a solution for reducing fuel consumption. However, the electricity for supplying the electric transportation system is mainly from the generation system that uses fossil fuels. For further improvement, the energy supplied to the transportation system should come from the renewable energy generation. This may lead to minimum use of fossil fuels besides giving minimum effect on environment. This paper presents the development of renewable energy generation where the generated power is used to supply the storage that charges the electric bicycle. The power is generated by solar photovoltaic panels and it is saved in a battery. The charging for the bicycle is taken from the battery. The developed system is off-grid since the system may be placed in the non-electrified area. This prototype will be a role model regarding the combination of renewable energy generation and green transportation system.

Publisher

Zeal Press

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3