1. Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naamn, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H. L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419. https://doi.org/10.1002/sce.10118
2. Ärlebäck, J. B., Blomberg, P., & Nilsson, P. (2015). An instructional design perspective on data modelling for learning statistics and modelling. In O. Helenius et al. (Eds.), Development of mathematics teaching: Design, scale, effects (pp. 37-46). Swedish Society for Research in Mathematics Education. http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A917833&dswid=9974
3. Brinson, J. R. (2015). Learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: A review of the empirical research. Computers & Education, 87, 218–237. https://doi.org/10.1016/j.compedu.2015.07.003
4. Cheng, M. F., Lin, J. L., Lin, S. Y., & Cheng, C. H. (2017). Scaffolding middle school and high school students’ modeling processes. Journal of Baltic Science Education, 16(2), 207-217. http://www.scientiasocialis.lt/jbse/?q=node/559
5. Cohen. J. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). Routledge.