Affiliation:
1. INSERM U1291
2. CHU Toulouse: Centre Hospitalier Universitaire de Toulouse
3. HSS: Hospital for Special Surgery
4. Institut Cochin de Genetique Moleculaire: Institut Cochin
Abstract
Abstract
Background. Human endosomal Toll-like receptors TLR7 and TLR8 recognize self and non-self RNA ligands, and are important mediators of innate immunity and autoimmune pathogenesis. TLR7 and TLR8 are respectively encoded by adjacent X-linked genes. We previously established that TLR7 evades X chromosome inactivation (XCI) in female immune cells. Whether TLR8 also evades XCI, however, has not yet been explored.
Method. In the current study, we used RNA fluorescence in situ hybridization (RNA-FISH) to directly visualize, on a single-cell basis, primary transcripts of TLR7 and TLR8 relative to X chromosome territories in CD14+ monocytes and CD4+ T lymphocytes from women, Klinefelter syndrome (KS) men, and euploid men. To assign X chromosome territories in cells lacking robust expression of XIST compartment, we designed probes specific for X-linked genes that do not escape XCI and therefore robustly labeling the active X chromosome. We also assessed whether XCI escape of TLR8 was associated with a sexual dimorphism in TLR8 protein expression by western blot and flow cytometry.
Results. Using RNA-FISH, we show that TLR8, like TLR7, evades XCI in immune cells, and that cells harboring TLR7 or TLR8 transcript foci are more frequent in women and KS men than in euploid men, resulting in a 7-fold difference in frequency. These transcriptional biases were again observable when comparing the single X of XY males with the active X of cells from females or KS males. Interestingly, TLR8 protein expression was significantly higher in female mononuclear blood cells, including all monocyte subsets, than in male cells.
Conclusions. TLR8, mirroring TLR7, escapes XCI in human monocytes and CD4+ T cells. Co-dependent transcription from the active X chromosome and escape from XCI could both contribute to higher TLR8 protein abundance in female cells, which may have implications for the response to viruses and bacteria, and the risk of developing inflammatory and autoimmune diseases.
Publisher
Research Square Platform LLC