Physics and physiology determine strategies of bacterial investment in flagellar motility

Author:

Sourjik Victor1ORCID,Lisevich Irina1,Colin Remy2ORCID,Yang Hao Yuan1ORCID,Ni Bin3

Affiliation:

1. Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO)

2. Max Planck Institute for Terrestrial Microbiology

3. China Agricultural University

Abstract

Abstract Regulatory strategies that allow microorganisms to balance their investment of limited resources in different physiological functions remain poorly understood, particularly for numerous cellular functions that are not directly required for growth. Here, we investigate the allocation of resources to flagellar swimming, the most prominent and costly behavior in bacteria that is not directly required for growth. We show that the dependence of motile behavior on gene expression is determined by the hydrodynamics of propulsion, which limits the ability of bacteria to increase their swimming by synthesizing more than a critical number of flagellar filaments. Together with the fitness cost of flagellar biosynthesis, this defines the physiologically relevant range of investment in motility. Gene expression in all E. coli isolates tested falls within this range, with many strains maximizing motility under nutrient-rich conditions, particularly when grown on a porous medium. The hydrodynamics of swimming may further explain the bet-hedging behavior observed at low levels of motility gene expression.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3