Affiliation:
1. MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas 78350, France
Abstract
Quantitative prediction of resource allocation for living systems has been an intensive area of research in the field of biology. Resource allocation was initially investigated in higher organisms by using empirical mathematical models based on mass distribution. A challenge is now to go a step further by reconciling the cellular scale to the individual scale. In the present paper, we review the foundations of modelling of resource allocation, particularly at the cellular scale: from small macro-molecular models to genome-scale cellular models. We enlighten how the combination of omic measurements and computational advances together with systems biology has contributed to dramatic progresses in the current understanding and prediction of cellular resource allocation. Accurate genome-wide predictive methods of resource allocation based on the resource balance analysis (RBA) framework have been developed and ensure a good trade-off between the complexity/tractability and the prediction capability of the model. The RBA framework shows promise for a wide range of applications in metabolic engineering and synthetic biology, and for pursuing investigations of the design principles of cellular and multi-cellular organisms.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献