Identification Cure Hub Genes of Chromophobe Cell Renal Carcinoma : A study based on Weighted Gene Co-expression Network Analysis (WGCNA) and the Cure Defective Models

Author:

Ahmadian Maryam1,Molavi Zahra1,Baghestani Ahmad Reza1,Maboudi Ali Akbar1

Affiliation:

1. Shahid Beheshti University of Medical Science

Abstract

Abstract

Renal cell carcinoma (RCC) is a prevalent and aggressive tumor of the urinary system with limited treatment success and poor patient outcomes. However, some patients exhibit long-term symptom relief and are considered 'cured' after successful treatment. This study explores the genetic and pathway mechanisms underlying RCC cure for the first time, utilizing a survival model called the 3-parameter defective Gompertz cure model. The study methodology involved two main steps: Firstly, employing Weighted Gene Co-expression Network Analysis (WGCNA) for gene network analysis, which identified six key modules associated with different aspects of cancer progression and survival. Hub genes, pivotal in cellular interactions, were pinpointed through network analysis. Secondly, the 3-parameter defective Gompertz model was utilized to identify therapeutic genes linked to successful treatment outcomes (CSRGs) in RCC. These genes were then compared with genes associated with patient survival (SRGs) using a cox model. The study found ten hub genes commonly identified by both the defective 3-parameter Gompertz and Cox models, with six genes (NCAPG, TTK, DLGAP5, TOP2A, BUB1B, and BUB1) showing strong predictive values. Moreover, six hub genes (TTK, KIF20A, DLGAP5, BUB1, AURKB, and CDC45) were highlighted by the defective Gompertz model as significantly impacting cure when expressed at high levels. Targeting these hub genes may hold promise for improving RCC treatment outcomes and prognosis prediction. Overall, this study provides valuable insights into the molecular mechanisms of RCC and underscores the potential of the defective 3-parameter Gompertz model in guiding targeted therapeutic approaches.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3