Characterization and functional analysis of ZmCesA for secondary cell wall biosynthesis in maize

Author:

Zhang Yuting1,Wu Hao2,Li Xin2,Ge Yufang2,Lu Xiaoduo3,Li Haiyan1

Affiliation:

1. Anhui Agriculture University: Anhui Agricultural University

2. Anhui Agricultural University

3. Qilu Normal University - Lixia Campus: Qilu Normal University

Abstract

Abstract Plant secondary cell wall provides physical support for upright growth and transportation of water and nutrients. Detailed characterization of the molecular mechanism for SCW biosynthesis would be of great importance for breeding maize varieties. Cellulose, synthesized by the cellulose synthase complex (CSC), composed of cellulose synthase (CesA) proteins, is a main component of plant cell walls. However, CesA genes that are specific for SCW biosynthesis in maize were undefined. In our study, ZmCesA10, 11, and 12 were characterized to be responsible for SCW biosynthesis in maize. ZmCesA10, 11, and 12 interact with each other and are co-expressed in maize culms and roots. Mutants for ZmCesa10, 11, and 12, exhibited an increased culm brittleness, a reduced cell-wall thickness, and cellulose content. We concluded that ZmCesA10, 11, and 12 would be markers for the SCW study, and finally helps in the construction of the molecular network for SCW biosynthesis in maize.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3