Impact of zinc oxide nanoparticles and iron on Stevia rebaudiana Bertoni growth, nutrient uptake, and bioactive compounds under in vitro conditions

Author:

Lankarani Seyed Mohammad Javad1,Karimi Jaber1,Rezaei Ayatollah1ORCID

Affiliation:

1. Shahed University

Abstract

Abstract The experiment investigated the effects of different levels of zinc oxide nanoparticles (ZnONPs) (0, 10, 20, and 30 mg/L) and iron sulfate (13.9, 27.8, and 55.6 mg/L) on morphological and physiological responses of Stevia rebaudiana Bertoni plant under in vitro conditions. Results indicated that the combined application of ZnONPs at 10 mg and iron at 27.8 mg led to the highest increase in shoot number, height, and biomass, showing a respective rise of 17.37%, 39.66%, and 45.02% compared to control cultures. The highest pigment content and tissue antioxidant activity (83.48%) was observed with the combined presence of 10 mg/L ZnONPs and 27.8 mg/L iron. As ZnONP concentration increased in the culture medium, the combined effect on lipid peroxidation rate became more pronounced. The impact of ZnONPs on phenolic compound production varied depending on the specific substance. The iron content of shoots increased significantly by 41.11% under the influence of 27.8 mg/L iron and 10 mg/L ZnONP compared to control cultures. Interaction effects of treatments at various levels resulted in increased zinc content in shoots, peaking at 27.8 mg/L iron when ZnONP reached 20 mg/L, representing a 56.28% increment over control levels before slightly decreasing. The most increases in stevioside and rebaudioside were observed with the combination of 10 mg/L ZnONP and 27.8 mg/L iron, showing enhancements of 75.04% and 63.08%, respectively. These findings suggest that ZnONPs could stimulate the growth and enhance the bioactive components of stevia plants, making them a viable option as elicitors in in vitro batch cultures.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3