Transfer and extension of experience from urban heavy rain flood risk warning

Author:

Einfalt Thomas1ORCID,Jasper-Tönnies Alrun1,Castro Bruno1

Affiliation:

1. hydro & meteo GmbH

Abstract

Abstract The high variability of local intense rainfall events and the short response time of flow in urban catchments demand improved methods in flood warning systems. A key aspect of success is the improvement of short-term forecasts of heavy rainfall by combining ensembles of radar nowcasts with numerical weather prediction ensembles. This paper presents results from this approach in the context of the urban fluvial water management and flood warning system in Hamburg since 2019 and extends its conclusions to other application fields. New challenges from this operational context are being investigated in another research project focusing on the city of Hanover. The topics of improved spatial rainfall data resolution, use of ensemble information from radar nowcasts for pluvial flood warning in connection with sewer load and possible solutions for real-time applications in the urban context are tackled. Experiences from both projects illustrate the importance of applying real-time measurements and ensemble forecasts in connection with a clear open information strategy. Data quality and resolution are crucial aspects in this context, making the combination of different data sources potentially significant for improving the outcome.

Publisher

Research Square Platform LLC

Reference11 articles.

1. Einfalt T, Scheibel M (2019) Niederschlag: Datenqualität und Verarbeitung für praktische Anwendungen in der Hydrologie, Wasserwirtschaft, 7–8 (2019), S. 52–55

2. Fennig C, Einfalt T, Jessen M (2022) Improvement of automatic rain gauge checks relevant to radar data adjustment. ERAD 2022–The 11th European Conference on Radar in Meteorology and Hydrology, 29th Aug- 2nd Sep 2022, Locarno

3. hydro & meteo (2009) The SCOUT Documentation, version 3.30. Lübeck, 69 pp

4. Ensembles of radar nowcasts and COSMO-DE-EPS for urban flood management;Jasper-Tönnies A;Water Sci Technol,2018

5. Jasper-Tönnies A, Jessen M Improved radar QPE with temporal interpolation using an advection scheme. Proc. ERAD, Garmisch (2014) 1–5 September 2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3