Operational Fuel Models Map for Atlantic Landscapes Using ALS and Sentinel-2 Images

Author:

Solares-Canal Ana1ORCID,Alonso Laura1,Rincón Thais1,Picos Juan1,Molina-Terrén Domingo M.2,Becerra Carmen1,Armesto Julia1

Affiliation:

1. University of Vigo - Campus Pontevedra: Universidad de Vigo - Campus de Pontevedra

2. University of Lleida School of Agricultural and Forestry Engineering: Universitat de Lleida Escola Tecnica Superior d'Enginyeria Agraria

Abstract

Abstract Background: In the new era of extreme wildfire events, new fire prevention and extinction strategies are emerging using software that simulates fire behavior. Having updated fuel models maps is critical in order to obtain reasonable simulations. Previous studies have proven that remote sensing is a key tool for obtaining these maps. However, there are many environments where remote sensing has not yet been evaluated in an operational context. One of these contexts are Atlantic environments. In this study, we describe a remote-sensing-data-based methodology for obtaining an operational fuel models map for an Atlantic-vegetation-covered area in Galicia (Northwestern Spain). We used Sentinel-2 images and ALS (Aerial Laser Scanner) data. Results: We have developed a methodology that allows to objectify the fuel models mapping for this type of environments since. For that we obtained the correspondences between the vegetation of the area and Rothermel fuel models. Additionally, since the methodology relies in remote sensing data, it allows us to obtain upgradable fuel models maps. For the study area, we obtained a map with high accuracy metrics. The accuracy of the supervised classifications involved in the mapping ranges between 70% and 100% (user’s and producer’s accuracies). Conclusions: The obtained methodology and the upgradable fuel models map will help to improve fire prevention and suppression strategies in Atlantic landscapes, aiding to shift towards more modern fire-simulation-based mitigation strategies.

Publisher

Research Square Platform LLC

Reference66 articles.

1. Alonso, Laura, Juan Picos, and Julia Armesto. “Forest Land Cover Mapping at a Regional Scale Using Multi-Temporal Sentinel-2 Imagery and RF Models.” Remote Sensing 13, 12 (2021): 2237. https://doi.org/10.3390/rs13122237.

2. Juan Gabriel Álvarez-González, Ramón Alberto Díaz-Varela, and Ana Daría Ruiz-González. “Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning;Alonso-Rego Cecilia;Remote Sensing,2020

3. Adela Martínez-Calvo, César Pérez-Cruzado, Fernando Castedo-Dorado, Eduardo González-Ferreiro, Juan Gabriel Álvarez-González, and Ana Daría Ruiz-González. “Estimating Stand and Fire-Related Surface and Canopy Fuel Variables in Pine Stands Using Low-Density Airborne and Single-Scan Terrestrial Laser Scanning Data;Alonso-Rego Cecilia;” Remote Sensing,2021

4. Anderson, Hal. E. 1982. Aids to Determining Fuel Models for Estimating Fire Behavior. 122. Vol. 122. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station.

5. Arellano, Stéfano, José A. Vega, Ana D. Ruiz, Antonio Arellano, Juan G. Álvarez, Daniel J. Vega, and Elena Pérez. 2016. Foto-Guía De Combustibles Forestales De Galicia y Comportamiento Del Fuego Asociado. Santiago de Compostela, Spain: Andavira Editora, S. L.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3