Full-scale field-free spin-orbit switching of the CoPt layer grown on vicinal substrates

Author:

Che Renchao1ORCID,Luo Yongming2,Liang Mengfan2,Feng Zhongshu2,Chen Haoran1,Jiang Nan1,Chen Jianhui2,Yuan Mingyue1,Zhang Jincang3,Cheng Yifeng4,Sun Lu5,Bai Ru2,Miao Xiaohe6,Wang Ningning2,Wu Yizheng7ORCID

Affiliation:

1. Fudan University

2. Hangzhou Dianzi University

3. Zhejiang Lab

4. Zhejiang Laboratory

5. ShanghaiTech University

6. Westlake University.

7. Fudan University,Shanghai Research Center for Quantum Sciences

Abstract

Abstract A simple, reliable and field-free spin orbit torque (SOT)-induced magnetization switching is a key ingredient for the development of the electrical controllable spintronic devices. Recently, the SOT induced deterministic switching of the CoPt single layer has attracts a lot of interests, as it could simplifies the structure and add new flexibility in the design of SOT devices, compared with the Ferromagnet/Heavy metal bilayer counterparts. Unfortunately, under the field-free switching strategies used nowadays, the switching of the CoPt layer is often partial, which sets a major obstacle for the practical applications. In this study, by growing the CoPt on vicinal substrates, we could achieve the full-scale (100% switching ratio) field-free switching of the CoPt layer. We demonstrate that when grown on vicinal substrates, the magnetic easy axis of the CoPt could be tilted from the normal direction of the film plane; the strength of Dzyaloshinskii–Moriya interaction (DMI) would be also be tuned as well. Micromagnetic simulation further reveal that the field-free switching stems from tilted magnetic anisotropy induced by the vicinal substrate, while the enhancement of DMI help reducing the critical switching current. In addition, we also found that the vicinal substrates could also enhance the SOT efficiency. With such simplestructure, full-scale switching, tunable DMI and SOT efficiency, our results provide a new knob for the design SOT-MRAM and future spintronic devices.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3