Preparation, characterization and chromatographic evaluation of nickel oxide deposited silica stationary phase in hydrophilic interaction liquid chromatography

Author:

Guo Ying-Jie1,Peng Xi-Tian2,Yu Qiong-Wei1,Feng Yu-Qi1

Affiliation:

1. Department of Chemistry, Wuhan University

2. Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products

Abstract

Abstract Nickel oxide deposited silica stationary phase was prepared by liquid phase deposition and characterized. Its chromatographic performance was evaluated using several compounds such as typical polar compounds and benzimidazoles as probes. The effects of mobile phase variables such as acetonitrile content, salt concentration, and pH on the chromatographic behavior, thermodynamics, and kinetics of these compounds were investigated to reveal the retention mechanism. The results showed that the prepared stationary phase exhibited a retention behavior of hydrophilic interaction liquid chromatography, and that multiple retention mechanisms including partitioning, adsorption, ion-exchange, electrostatic attraction, and coordination interactions contributed to solute retention. The coordination of nickel oxide electron-accepting sites and the electron-donating solutes resulted in the mixed-mode retention on stationary phase, which could be very useful for enhancing the chromatographic selectivity for the analytes. The batch-to-batch reproducibility was acceptable with the relative standard deviations of probe retentionof less than 9.89%. The prepared nickel oxide deposited silica stationary phase was successfully employed for the separation of several compounds, and it showed better separation effect and different selectivity from silica column and commercial Zorbax NH2 column.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3