Air Quality in different urban Hotspots in a Metropolitan City in India and the environmental implication

Author:

Diya M1,Kuppili Sudheer Kumar1,Nagendra S M Shiva1

Affiliation:

1. Indian Institute of Technology (IIT) Madras

Abstract

Abstract

This research study investigates hourly data on concentrations of five major air pollutants such as particulate matter (PM10, PM2.5) and gaseous pollutants (SO2, NO2, CO) measured during 2022 at four hotspot sites (Industrial site, traffic site, commercial site, harbour and one residential site) in Chennai, India. The analysis encompasses temporal variations spanning annual, seasonal, and diurnal variations in the pollutants. Notably, PM10 and CO emerge as the predominant pollutants, with the highest concentrations at industrial and traffic sites (PM10: 67.64 ± 40.77 µg/m³, CO: 1.41 ± 0.84 mg/m³; Traffic site: PM10: 58.67 ± 20.05 µg/m³, CO: 0.99 ± 0.57 mg/m³).Seasonal dynamics reveal prominent winter spikes in Particulate Matter (PM10, PM2.5) and carbon monoxide (CO) concentrations, while nitrogen dioxide (NO2) and sulphur dioxide (SO2) levels peak during the summer season, particularly in the harbour area. The proximity to roadways exerts a discernible influence on diurnal patterns, with traffic sites showcasing broader rush hour peaks compared to sharper spikes observed at other sites. Furthermore, distinct bimodal patterns are evident for PM10 and PM2.5 concentrations in residential and harbour areas. A common Lognormal distribution pattern is identified across the studied sites, suggesting consistent air quality trends despite contrasting locations. The Conditional Probability Function (CPF) is used in conjunction with local meteorological conditions for identifying key pollution sources in each location. The implementation of polar plots emphasizes industries as principal local sources of pollution, at industrial sites significantly contributing to PM10, SO2, and NO2 concentrations under specific wind conditions. The main objective of the present study is to facilitate a good understanding of pollutant dynamics, pollution sources, and their intricate interplay with meteorological factors, thereby contributing to the formulation and implementation of effective air pollution control and mitigation strategies.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3