Predicting human risk with multidrug resistant Enterobacter hormaechei MS2 with MCR 9 gene isolated from the feces of healthy broiler through whole genome sequence based analysis.

Author:

S Sreejith1,Premnath Manjusha1,PR Prathuish2,Mathew Jyothis1,Abraham Swapna Susan2,Nath Chitra C3,Paul Nimmy3,EK Radhakrishnan1

Affiliation:

1. Mahatma Gandhi University, Kottayam

2. State institute for animal diseases, Kerala

3. Government Medical College Kottayam, Kerala

Abstract

Abstract The zoonotic spread of antimicrobial resistance (AMR) and the associated infections are becoming a major threat to the human population worldwide. Strategies to identify the potential pathogen dissemination by seemingly healthy livestock are at a nascent stage and it is of significant importance to monitor environmental evolution of AMR. In this study, a multidrug resistant strain of Enterobacter hormaechei MS2 isolated from the feces of healthy broiler chicken has been characterized by whole genome sequencing based method. Here, the isolate was primarily subjected to antimicrobial susceptibility testing followed genome sequencing and analysis. From the antimicrobial susceptibility testing result, the strain was found to be resistant to multiple classes of drugs including the colistin which is an important candidate drug used to treat infectious diseases. The resistome prediction of genomic data further revealed the presence of 7 perfect and 26 strict hits including those for MCR-9 and FosA6. The pathogenicity prediction has also demonstrated the strain to have the potential to be a human pathogen with 0.72 probability. The phylogenetic analysis has also supported the zoonotic potential of the strain due to its clustering with isolates from both human and livestock-associated host groups. The results of the study suggest the need for a strong surveillance system to identify the opportunistic zoonotic pathogens to prevent a silent AMR menace mediated by them. Carriage of multi-drug resistant strains in the livestock gut microbiome is also a serious concern as it has high AMR transmissibility through contact and supply chain activities.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3