Exploratory Analysis and Predictive Modeling of Social Media Data by Decoding Twitter

Author:

Ramesh S. S. Subashka1,Raghavaraju Charith1,P Sutharsan. L.1,Navis Anton Theodore1

Affiliation:

1. SRM Institute of Science and Technology

Abstract

Abstract

With a focus on user engagement, content distribution, sentiment analysis, and predictive modeling, the study provides a thorough analysis of Twitter data. Using popular hashtags, tweet sources, and user locations, the analysis starts by visualizing the data using Python libraries like Plotly, Seaborn, and WordCloud. To understand user behavior patterns and extract temporal information, exploratory data analysis techniques are used, and furthermore the dominant sentiment in the dataset, sentiment analysis is also carried out. The research goes one step further and involves training a neural network for classification tasks through machine learning modeling. The outcomes show how to visualize sentiment trends, tweet content, and model performance in an insightful way. The results provide insightful information about sentiment patterns, user interactions, and the dynamics of content dissemination on the Twitter network.

Publisher

Research Square Platform LLC

Reference32 articles.

1. Predicting future personal life events on twitter via recurrent neural networks;Khodabakhsh M;Journal of Intelligent Information Systems,2020

2. Using spatiotemporal distribution of geocoded Twitter data to predict US county-level health indices;Nguyen T;Future Generation Computer Systems,2020

3. Predictive modeling for suspicious content identification on Twitter;Gangwar SS;Social Network Analysis and Mining,2022

4. A self-attention hybrid emoji prediction model for code-mixed language:(Hinglish);Himabindu GSSN;Social Network Analysis and Mining,2022

5. An enhanced multimodal fusion deep learning neural network for lung cancer classification;Sangeetha SKB;Systems and Soft Computing,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3