Predictive modeling for suspicious content identification on Twitter
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Human-Computer Interaction,Media Technology,Communication,Information Systems
Link
https://link.springer.com/content/pdf/10.1007/s13278-022-00977-7.pdf
Reference42 articles.
1. Abkenar SB, Kashani MH, Akbari M, Mahdipour E (2020) Twitter spam detection: a systematic review. arXiv preprint arXiv:2011.14754
2. Adhikari A, Ram A, Tang R, Lin J (2019) Rethinking complex neural network architectures for document classification. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, vol 1 (Long and Short Papers), pp 4046–4051
3. Aizawa Akiko (2003) An information-theoretic perspective of TF-IDF measures. Inf Process Manag 39(1):45–65
4. Alom Z, Carminati B, Ferrari Elena (2020) A deep learning model for Twitter spam detection. Online Soc Netw Media 18:100079
5. Barushka A, Hajek P (2018) Spam filtering using integrated distribution-based balancing approach and regularized deep neural networks. Appl Intell 48(10):3538–3556
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mapping automatic social media information disorder. The role of bots and AI in spreading misleading information in society;PLOS ONE;2024-05-31
2. Exploratory Analysis and Predictive Modeling of Social Media Data by Decoding Twitter;2024-05-23
3. IntelliTweet: A Multifaceted Feature Approach to Detect Malicious Tweets;Lecture Notes in Computer Science;2024
4. Manta Ray Foraging Optimizer with Deep Learning based Malicious Activity Detection for Privacy Protection in Social Networks;2023 IEEE Technology & Engineering Management Conference - Asia Pacific (TEMSCON-ASPAC);2023-12-14
5. Performance Comparison of Deep Learning Algorithms in Twitter Bot Detection;2022 Fifth College of Science International Conference of Recent Trends in Information Technology (CSCTIT);2022-11-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3