Keratin 17 modulates the immune topography of pancreatic cancer

Author:

Delgado-Coka Lyanne A.1,Horowitz Michael1,Torrente-Goncalves Mariana1,Roa-Peña Lucia2,Leiton Cindy V.1,Hasan Mahmudul1,Babu Sruthi1,Fassler Danielle1,Oentoro Jaymie1,Bai Ji-Dong Karen1,Petricoin Emanuel F3,Matrisian Lynn M.1,Blais Edik Matthew3,Marchenko Natalia1,Allard Felicia D.4,Jiang Wei5,Larson Brent6,Hendifar Andrew6,Chen Chao1,Abousamra Shahira1,Samaras Dimitris1,Kurc Tahsin1,Saltz Joel1,Escobar-Hoyos Luisa F.7,Shroyer Kenneth1

Affiliation:

1. Stony Brook University

2. Universidad Nacional de Colombia

3. Perthera Inc

4. University of Arkansas

5. Thomas Jefferson University

6. Cedars-Sinai: Cedars-Sinai Health System

7. Yale University

Abstract

Abstract

Background: The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC). Although never studied as a potential modulator of the immune response in most cancers, Keratin 17 (K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in PDAC, and that uncovering this relationship could provide insight to guide the development of immunotherapeutic opportunities to extend patient survival. Methods: Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational imaging technology were used to decipher the abundance and spatial distribution of T cells, macrophages, and tumor cells, relative to K17 expression in 235 PDACs. Results: K17 expression had profound effects on the exclusion of intratumoral CD8 + T cells and was also associated with decreased numbers of peritumoral CD8 + T cells, CD16 + macrophages, and CD163 + macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8 + T cell abundance were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype, nor KRAS, p53, SMAD4, or CDKN2A mutations. Conclusions: Thus, K17 expression correlates with major differences in the immune microenvironment that are independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-mediated immune effects on the immune system could restore the innate immunologic response to PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most deadly form of cancer.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3