Affiliation:
1. Van Andel Institute
2. University of Pennsylvania
3. George Manson University
4. Van Andel Research Institute
5. University of Wisconsin-Madison
Abstract
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.
Publisher
Research Square Platform LLC
Reference78 articles.
1. Mortality associated with neurofibromatosis 1: a cohort study of 1895 patients in 1980–2006 in France;Duong TA;Orphanet J Rare Dis,2011
2. A genetic study of von Recklinghausen neurofibromatosis in south east Wales. II. Guidelines for genetic counselling;Huson SM;J Med Genet. BMJ Publishing Group Ltd,1989
3. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus;Viskochil D;Cell. Elsevier,1990
4. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science. American Association for the Advancement of Science; 1990;249:181–6.
5. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis;DeClue JE;Cell. Elsevier,1992