A survey on artificial intelligence techniques for security event correlation: models, challenges, and opportunities

Author:

Levshun Diana1,Kotenko Igor2

Affiliation:

1. St. Petersburg Federal Research Center of the Russian Academy of Sciences

2. ITMO University

Abstract

Abstract Information systems need to process a large amount of event monitoring data. The process of finding the relationships between events is called correlation, which creates a context between independent events and previously collected information in real time and normalizes it for subsequent processing. In cybersecurity, events can determine the steps of attackers and can be analyzed as part of a specific attack strategy. In this survey, we present the systematization of security event correlation models in terms of their representation in AI-based monitoring systems as: rule-based, semantic, graphical and machine learning based-models. We define the main directions of current research in the field of AI-based security event correlation and the methods used for the correlation of both single events and their sequences in attack scenarios. We also describe the prospects for the development of hybrid correlation models. In conclusion, we identify the existing problems in the field and possible ways to overcome them.

Publisher

Research Square Platform LLC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3