Methodology for Collecting Data on the Activity of Malware for Windows OS Based on MITRE ATT&CK

Author:

Smirnov Danil,Evsutin OlegORCID

Abstract

The digitalization of the modern economy has led to the emergence of information technologies in various areas of human activity. In addition to positive effects, this has enhanced the problem of countering cyber threats. The implementation of cyber threats often impacts serious consequences, especially when it comes to critical information infrastructure. Malware is an important part of the modern landscape of cyber threats; the most high-profile cybercrimes of recent years are associated with the use of malware. In this regard, the problem area of countering malware is actively developing, and one of the promising areas of research in this area is the creation of methods for detecting malware based on machine learning. However, the weak point of many well-known studies is the construction of reliable data sets for machine learning models, when the authors do not disclose the features of the formation, preprocessing and labeling of data on malware. This fact compromises the reproducibility a lot of studies. This paper proposes a methodology for collecting data on malware activity based on the MITRE ATT&CK matrix and Sigma rules and designed for Windows OS. The proposed methodology is aimed at improving the quality of datasets containing malware and legitimate processes behavior’s features, as well as at reducing the time of data label by an expert method. A software stand was prepared and experiments were carried out for testing the methodology. The results of experiments confirmed applicability of our methodology.

Publisher

SPIIRAS

Reference82 articles.

1. Cybercrime Will Cost the World US$6 Trillion by the End of the Year: Study. URL: https://cisomag.eccouncil.org/cybercrime-will-cost-the-world-us6-trillion-by-the-end-of-the-year-study/ (дата обращения: 10.11.2023).

2. Ландшафт угроз. URL: https://encyclopedia.kaspersky.ru/glossary/threat-landscape/ (дата обращения: 08.11.2023).

3. Левшун Д.С., Гайфулина Д.А., Чечулин А.А., Котенко И.В. Проблемные вопросы информационной безопасности киберфизических систем // Информатика и автоматизация. 2020. Т. 19. № 5. С. 1050–1088.

4. ГОСТ Р 51275-2006. Защита информации. Объект информатизации. Факторы, воздействующие на информацию // М.: Госстандарт России. 2006.

5. Denning D. An Intrusion-Detection Model // IEEE Transactions on Software Engineering. 1987. no. 2. pp. 222–232.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3