Finite-element simulation of interfacial resistive switching by Schottky barrier height modulation

Author:

Khot Sagar1,Jung Dongmyung1,Kwon Yongwoo1ORCID

Affiliation:

1. Hongik University

Abstract

Abstract This study demonstrates a numerical model for interfacial switching memristors based on the Schottky barrier height modulation mechanism. A resistive Schottky contact is formed for an n-type semiconductor and a high work-function metal (e.g., strontium titanate and platinum). The contact resistance is determined by the Schottky barrier height, which is influenced by the concentration of oxygen vacancies serving as space charges. Accordingly, the spatial distribution of vacancies and cell conductance can be controlled by applying a bias voltage. This interfacial switching is advantageous over filamentary switching, owing to the conductance change being more gradual in interfacial switching. In this study, a two-step numerical analysis was performed to model the conductance change in an interfacial switching memristor having a metal-oxide-metal structure of Pt/SrTiO3/Nb-SrTiO3, where Pt and SrTiO3 form a Schottky contact. In the first step, the change in the spatial distribution of vacancies by an applied switching voltage was obtained by solving the drift and diffusion equations for vacancies. In the second step, after setting the Schottky barrier height according to the vacancy concentration near the contact, the cell conductance was obtained by calculating the current value by applying a small read voltage. Consequently, our simulation successfully reproduced the experimental results for the SrTiO3-based memristor. Through this study, our device simulation for interfacial switching was successfully established, and it can be utilized in the computational design of various device architectures.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3