Investigation of switching uniformity in resistive memory via finite element simulation of conductive-filament formation

Author:

Min Kyunghwan,Jung Dongmyung,Kwon Yongwoo

Abstract

AbstractHerein, we present simulations of conductive filament formation in resistive random-access memory using a finite element solver. We consider the switching material, which is typically an oxide, as a two-phase material comprising low- and high-resistance phases. The low-resistance phase corresponds to a defective and conducting region with a high anion vacancy concentration, whereas the high-resistance phase corresponds to a non-defective and insulating region with a low anion-vacancy concentration. We adopt a phase variable corresponding to 0 and 1 in the insulating and conducting phases, respectively, and we change the phase variable suitably when new defects are introduced during voltage ramp-up for forming. Initially, some defects are embedded in the switching material. When the applied voltage is ramped up, the phase variable changes from 0 to 1 at locations wherein the electric field exceeds a critical value, which corresponds to the introduction of new defects via vacancy generation. The applied voltage at which the defects percolate to form a filament is considered as the forming voltage. Here, we study the forming-voltage uniformity using simulations, and we find that for typical planar-electrode devices, the forming voltage varies significantly owing to the stochastic location of the initial defects at which the electric field is “crowded.” On the other hand, a protruding electrode can improve the switching uniformity drastically via facilitating the deterministic location of electric-field crowding, which also supported by the reported experimental results.

Funder

National Research Foundation of Korea

Hongik University Research Fund

IC Design Education Center

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3