Channel Spatio-temporal Convolutional Network for Pedestrian Trajectory Prediction

Author:

Lu Zhonghao1,Luo Yonglong1,Xu Lina1,Hu Ying1,Zheng Xiaoyao1,Sun Liping1

Affiliation:

1. Anhui Normal University

Abstract

Abstract Accurate and timely prediction of the future path of agents in the vicinity of an agent is the core of avoiding conflict in automated applications. The traditional method based on the RNN model requires high computational cost in the prediction process, especially for long-series prediction. In order to obtain a more efficient and accurate prediction trajectory, a channel spatio-temporal convolutional network framework, CSTCN, is proposed in this paper. The framework models the spatial environment as a block of data input to the CSTCN and captures spatio-temporal interactions using an improved temporal convolutional network. Compared with the traditional model, the spatial and temporal modeling of the proposed model is calculated in each local time window so that it can be executed in parallel to obtain higher computational efficiency. Experimental results on five trajectory prediction benchmark datasets demonstrate that the proposed model is superior to the other seven state-of-the-art models in efficiency and accuracy.

Publisher

Research Square Platform LLC

Reference67 articles.

1. A survey on trajectory-prediction methods for autonomous driving;Huang Y;IEEE Trans Intell Veh

2. Li J, Ma H, Tomizuka M (2019) “Conditional generative neural system for probabilistic trajectory prediction,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Nov pp. 6150–6156

3. Zhang X, Yang X, Zhang W et al (2021) "Crowd emotion evaluation based on fuzzy inference of arousal and valence," Neurocomputing, vol.445, pp. 194–205.

4. Human motion trajectory prediction: A survey;Rudenko A;Int J Robot Res

5. State Estimation and Motion Prediction of Vehicles and Vulnerable Road Users for Cooperative Autonomous Driving: A Survey;Ghorai P;IEEE Trans Intell Transp Syst

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3