Comparison of Stresses in Monoblock Tilted Implants and Conventional Angled Multiunit Abutment-implant Connection Systems in the All-on-four Procedure

Author:

Zincir Özge Özdal1ORCID,Parlar Ateş2

Affiliation:

1. Private Meltem Oral and Dental Health Polyclinics

2. Private Practise

Abstract

Abstract Background: The All-on-four dental implant method is an implantology method designed to provide a comfortable prosthetic treatment option by avoiding advanced surgical procedures. This research aims to compare and evaluate the stress and tension values in conventional angled multiunit abutment-implant connection systems and monoblock dental implants used in the all-on-four procedure with finite element analysis.Methods: Two master models were created by placing four implants connected to multiunit abutments (group A) in the interforaminal region of a completely edentulous mandible and four monoblock implants (group B) in the same region of another completely edentulous mandible. Group A implants were classified according to their diameter as follows: 3.5 mm (M1A), 4.0 mm (M2A), and 4.5 mm (M3A). Similarly, group B implants were classified as M1B, M2B, and M3B. In the six models rehabilitated with acrylic fixed prostheses, a 100 N force was applied to the anterior implant region, and a 250 N force was applied to the posterior cantilever in both axial and 30° oblique directions. Von Mises stresses were analyzed in the bone and implant regions of all models.Results: M1A and M1B, M2A and M2B, and M3A and M3B were compared with each other under axial and oblique forces. The maximum Von Mises stresses in the bone around implants and the prosthesis screws, and the maximum and minimum principal stresses in the cortical and trabecular bone in group A models were significantly higher than those in group B models.Conclusions: This study shows that the use of monoblock implants without abutment-implant connections can prevent bacterial accumulation in micro-gaps, but the biomechanical properties of this implant system should be improved.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3