LPBSA: Enhancing Optimization Efficiency through Learner Performance-based Behavior and Simulated Annealing

Author:

Hamad Dana Rasul1,Rashid Tarik A.2

Affiliation:

1. Soran University

2. University of Kurdistan Hewler

Abstract

Abstract This study introduces the LPBSA, an advanced optimization algorithm that combines Learner Performance-based Behavior (LPB) and Simulated Annealing (SA) in a hybrid approach. Emphasizing metaheuristics, the LPBSA addresses and mitigates the challenges associated with traditional LPB methodologies, enhancing convergence, robustness, and adaptability in solving complex optimization problems. Through extensive evaluations using benchmark test functions, the LPBSA demonstrates superior performance compared to LPB and competes favorably with established algorithms such as PSO, FDO, LEO, and GA. Real-world applications underscore the algorithm's promise, with LPBSA outperforming the LEO algorithm in two tested scenarios. Based on the study results many test function results such as TF5 by recording (4.76762333) and some other test functions provided in the result section prove that LPBSA outperforms popular algorithms. This research highlights the efficacy of a hybrid approach in the ongoing evolution of optimization algorithms, showcasing the LPBSA's capacity to navigate diverse optimization landscapes and contribute significantly to addressing intricate optimization challenges.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3