The effect of choosing optimizer algorithms to improve computer vision tasks: a comparative study

Author:

Hassan EsraaORCID,Shams Mahmoud Y.,Hikal Noha A.,Elmougy Samir

Abstract

AbstractOptimization algorithms are used to improve model accuracy. The optimization process undergoes multiple cycles until convergence. A variety of optimization strategies have been developed to overcome the obstacles involved in the learning process. Some of these strategies have been considered in this study to learn more about their complexities. It is crucial to analyse and summarise optimization techniques methodically from a machine learning standpoint since this can provide direction for future work in both machine learning and optimization. The approaches under consideration include the Stochastic Gradient Descent (SGD), Stochastic Optimization Descent with Momentum, Rung Kutta, Adaptive Learning Rate, Root Mean Square Propagation, Adaptive Moment Estimation, Deep Ensembles, Feedback Alignment, Direct Feedback Alignment, Adfactor, AMSGrad, and Gravity. prove the ability of each optimizer applied to machine learning models. Firstly, tests on a skin cancer using the ISIC standard dataset for skin cancer detection were applied using three common optimizers (Adaptive Moment, SGD, and Root Mean Square Propagation) to explore the effect of the algorithms on the skin images. The optimal training results from the analysis indicate that the performance values are enhanced using the Adam optimizer, which achieved 97.30% accuracy. The second dataset is COVIDx CT images, and the results achieved are 99.07% accuracy based on the Adam optimizer. The result indicated that the utilisation of optimizers such as SGD and Adam improved the accuracy in training, testing, and validation stages.

Funder

Ministry of Scientific Research, Egypt

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3