Impact of accouting for a thermally-balanced soil state on subseasonal predictability

Author:

Ardilouze Constantin1ORCID,Boone Aaron Anthony2

Affiliation:

1. CNRM GMGEC: Centre National de Recherches Meteorologiques Groupe de Meteorologie de Grande Echelle et Climat

2. CNRM GMME: Centre National de Recherches Meteorologiques Groupe de Meteorologie de Moyenne Echelle

Abstract

Abstract Accurate soil moisture initial conditions in dynamical subseasonal forecast systems are known to improve the temperature forecast skill regionally, through more realistic water and energy fluxes at the land-atmosphere interface. Recently, results from a multi-model coordinated experiment have provided evidence of the primal contribution of the initial surface and subsurface soil temperature over the Tibetan Plateau for capturing a hemispheric scale atmopsheric teleconnection leading to improved subseasonal forecasts. Yet, both the soil temperature and water content are key components of the soil enthalpy and we hypothesize that properly initializing one of them without modifying the other in a consistent manner can alter the soil thermal equilibrium, thereby potentially reducing the benefit of land initial conditions on subsequent atmospheric forecasts. This study builds on the protocol of the above-mentioned multi-model experiment, by testing three different land initialization strategies in an Earth system model. Results of this pilot study suggest that a better mass and energy balance in land initial conditions of the Tibetan Plateau triggers a wave train which propagates through the northern hemisphere mid-latitudes, resulting in an improved large scale circulation and temperature anomalies over multiple regions of the globe. While this study is based on a single case, it strongly advocates for enhanced attention towards preserving the soil energy equilibrium at initialization to make the most of land as a driver of atmospheric extended-range predictability.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3