Improved subseasonal-to-seasonal precipitation prediction of climate models with nudging approach for better initialization of Tibetan Plateau-Rocky Mountain Circumglobal wave train and land surface conditions

Author:

Qin Yi,Tang QiORCID,Xue Yongkang,Liu Ye,Lin Yanluan

Abstract

AbstractReliable subseasonal-to-seasonal (S2S) precipitation prediction is highly desired due to the great socioeconomical implications, yet it remains one of the most challenging topics in the weather/climate prediction research area. As part of the Impact of Initialized Land Temperature and Snowpack on Sub-seasonal to Seasonal Prediction (LS4P) project of the Global Energy and Water Exchanges (GEWEX) program, twenty-one climate models follow the LS4P protocol to quantify the impact of the Tibetan Plateau (TP) land surface temperature/subsurface temperature (LST/SUBT) springtime anomalies on the global summertime precipitation. We find that nudging towards reanalysis winds is crucial for climate models to generate atmosphere and land surface initial conditions close to observations, which is necessary for meaningful S2S applications. Simulations with nudged initial conditions can better capture the summer precipitation responses to the imposed TP LST/SUBT spring anomalies at hotspot regions all over the world. Further analyses show that the enhanced S2S prediction skill is largely attributable to the substantially improved initialization of the Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train pattern in the atmosphere. This study highlights the important role that initial condition plays in the S2S prediction and suggests that data assimilation technique (e.g., nudging) should be adopted to initialize climate models to improve their S2S prediction.

Funder

Biological and Environmental Research

Lawrence Livermore National Laboratory

National Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3