Differential silica nanoparticles functionalized with branched poly(1-Vinyl-1,2,4-triazole): antibacterial, antifungal, and cytotoxic qualities

Author:

Usul Sedef Kaptan1,Lüleci Hatice Büşra1,Değirmenci Nurdan Sena2,Ergüden Bengü1,Aslan Ayşe1

Affiliation:

1. Gebze Technical University

2. Yeditepe University

Abstract

Abstract This research aims to improve antimicrobial materials based on functional silica nanoparticles. Three different methods were used in the study to create silica nanoparticles with other properties. The nanoparticles' morphological structures are porous, hollow, and filled with spherical forms. The surface of these nanoparticles was grafted with poly(1-vinyl-1,2,4-triazole) (PVTri). The morphological properties of nanocomposites were used for analyze. In contrast, thermal gravimetric analysis was used to characterize the thermal properties of nanocomposites (TGA). The silica nanoparticles were evaluated for them in vitro antimicrobial activity against, Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae using minimum inhibitory concentration (MIC) measurement. Silica nanoparticles have different antifungal and antibacterial properties related to their structure. The cytotoxic effects of the silica nanoparticles on HaCaT cells were performed with an MTS assay. In this study, we observed that high doses of HSS and e-SiO2 decreased cell growth, while HSS and e-SiO2 composite with PVTri increased cell proliferation.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3