Combined effects of landscape fragmentation and sampling frequency of movement data on the assessment of landscape connectivity

Author:

Prima Marie-Caroline1,Garel Mathieu2,Marchand Pascal2,Redcliffe James3,Börger Luca3,Barnier Florian1

Affiliation:

1. PatriNat (OFB - MNHN)

2. Office Français de la Biodiversité

3. Swansea University

Abstract

Abstract Background - Network theory is largely applied in real-world systems to assess landscape connectivity using empirical or theoretical networks. Empirical networks are usually built from discontinuous individual movement trajectories without knowing the effect of relocation frequency on the assessment of landscape connectivity while theoretical networks generally rely on simple movement rules. We investigated the combined effects of relocation sampling frequency and landscape fragmentation on the assessment of landscape connectivity using simulated trajectories and empirical high-resolution (1 Hz) trajectories of Alpine ibex (Capra ibex). We also quantified the capacity of commonly used theoretical networks to accurately predict landcape connectivity from multiple movement processes. Methods – We simulated forager trajectories from continuous correlated biased random walks in simulated landscapes with three levels of landscape fragmentation. High-resolution ibex trajectories were reconstructed using GPS-enabled multi-sensor biologging data and the dead-reckoning technique. For both simulated and empirical trajectories, we generated spatial networks from regularly resampled trajectories and assessed changes in their topology and information loss depending on the resampling frequency and landscape fragmentation. We finally built commonly used theoretical networks in the same landscapes and compared their predictions to actual connectivity. Results - We demonstrated that an accurate assessment of landscape connectivity can be severely hampered (e.g., up to 66% of undetected visited patches and 29% of spurious links) when the relocation frequency is too coarse compared to the temporal dynamics of animal movement. However, the level of landscape fragmentation and underlying movement processes can both mitigate the effect of relocation sampling frequency. We also showed that network topologies emerging from different movement behaviours and a wide range of landscape fragmentation were complex, and that commonly used theoretical networks accurately predicted only 30–50% of landscape connectivity in such environments. Conclusions - Very high-resolution trajectories were generally necessary to accurately identify complex network topologies and avoid the generation of spurious information on landscape connectivity. New technologies providing such high-resolution datasets over long period should thus grow in the movement ecology sphere. In addition, commonly used theoretical models should be applied with caution to the study of landscape connectivity in real-world systems as they did not perform well as predictive tools.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3