The ultrasonic vibration-assisted polishing material removal model of tilted cylindrical polishing tool based on BK7 glass

Author:

Cui Zhijie1,Liang Yingdong,Chen Xin,Meng Fanwei,Wang Zixuan,Yu TianbiaoORCID,Zhao Ji

Affiliation:

1. Northeastern University School of Mechanical Engineering and Automation

Abstract

Abstract BK7 glass is widely used in various optical instruments as common ceramic material. However, there are still several difficulties in the polishing process due to its material properties. Ultrasonic vibration-assisted polishing (UVAP) is used widely for its excellent material removal properties. However, there are few researches on the model of UVAP material removal for tilted. Therefore, this paper investigates this problem. A model of UVAP material removal was established for titled column polishing; The pressure distribution and velocity distribution in the contact zone were modeled by means of experiments and geometric analysis. A series of orthogonal experiments were conducted, and the experimental results showed that the coefficient of determination was above 0.9 after fitting the actual profile to the predicted profile. The results of the orthogonal experiments were also analyzed by ANOVA. The predict error of maximum removal depth was less than 13.12%. The error of material removal rate (MRR) was less than 9.24%. By PSD analysis, it was found that the introduction of ultrasonic amplitude has a good effect on suppressing the medium and high frequency errors on the machined surface. The novel model can be used to optimize machining parameters and provide theoretical support for complex parts polishing.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3