A Biochemomechanical Model of Collagen Turnover in Arterial Adaptations to Hemodynamic Loading

Author:

Tilahun Hailu G.1,Mullagura Haritha N.1,Humphrey Jay D.2,Baek Seungik1

Affiliation:

1. Michigan State University

2. Yale University

Abstract

Abstract The production, removal, and remodeling of fibrillar collagen is fundamental to arterial homeostasis, including dynamic morphological and microstructural changes that occur in response to sustained changes in blood flow and pressure under physiological conditions. These dynamic processes involve complex, coupled biological, chemical, and mechanical mechanisms that are not completely understood. Nevertheless, recent simulations using constrained mixture models with phenomenologically motivated constitutive relations have demonstrated a capability to predict salient features of the progression of certain vascular adaptations and disease processes. Collagen turnover is modeled, in part, via stress-dependent changes in collagen half-life, typically taken within the range of 10–70 days. By contrast, in this work we introduce a biochemomechanical approach to model the cellular synthesis of procollagen as well as its transition from an intermediate state of assembled microfibrils to mature cross-linked fibers, with mechano-regulated removal. The resulting model can simulate temporal changes in geometry, composition, and stress during early vascular adaptation (weeks to months) for modest changes in blood flow or pressure. It is shown that these simulations capture salient features from data presented in the literature from different animal models.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3