Affiliation:
1. Department of Mechanical Engineering, Columbia University, New York, New York 10027;
2. Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511;
Abstract
Biological growth processes involve mass exchanges that increase, decrease, or replace material that constitutes cells, tissues, and organs. In most cases, such exchanges alter the structural makeup of the material and consequently affect associated mechanobiological responses to applied loads. Given that the type and extent of changes in structural integrity depend on the different constituents involved (e.g., particular cytoskeletal or extracellular matrix proteins), the continuum theory of mixtures is ideally suited to model the mechanics of growth and remodeling. The goal of this review is twofold: first, to highlight a few illustrative examples that show diverse applications of mixture theory to describe biological growth and/or remodeling; second, to identify some open problems in the fields of modeling soft-tissue growth and remodeling.
Subject
Biomedical Engineering,Medicine (miscellaneous)
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献